skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aldeguer-Riquelme, Borja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Cooper, Vaughn S (Ed.)
    ABSTRACT Despite the importance of intra-species variants of viruses for causing disease and/or disrupting ecosystem functioning, there is no universally applicable standard to define these. A (natural) gap in whole-genome average nucleotide identity (ANI) values around 95% is commonly used to define species, especially for bacteriophages, but whether a similar gap exists within species that can be used to define intra-species units has not been evaluated yet. Whole-genome comparisons among members of 1,016 bacteriophage (Caudoviricetes) species revealed a region of low frequency of ANI values around 99.2%–99.8%, showing threefold or fewer pairs than expected for an even distribution. This second gap is prevalent in viruses infecting various cultured or uncultured hosts from a variety of environments, although a few exceptions to this pattern were also observed (3.7% of total species) and are likely attributed to cultivation biases or other factors. Similar results were observed for a limited set of eukaryotic viruses that are adequately sampled, including SARS-CoV-2, whose ANI-based clusters matched well with the WHO-defined variants of concern, indicating that our findings from bacteriophages might be more broadly applicable and the ANI-based clusters may represent functionally and/or ecologically distinct units. These units appear to be predominantly driven by (high) ecological cohesiveness coupled to either frequent recombination for bacteriophages or selection and clonal evolution for other viruses such as SARS-CoV-2, indicating that fundamentally different underlying mechanisms could lead to similar diversity patterns. Accordingly, we propose the ANI gap approach outlined above for defining viral intra-species units, for which we propose the term genomovars. IMPORTANCEViral species are composed of an ensemble of intra-species variants whose individual dynamics may have major implications for human and animal health and/or ecosystem functioning. However, the lack of universally accepted standards to define these intra-species variants has led researchers to use different approaches for this task, creating inconsistent intra-species units across different viral families and confusion in communication. By comparing hundreds of mostly bacteriophage genomes, we show that there is a widely distributed natural gap in whole-genome average nucleotide identity values in most, but not all, of these species that can be used to define intra-species units. Therefore, these results advance the molecular toolbox for tracking viral intra-species units and should facilitate future epidemiological and environmental studies. 
    more » « less
  3. Abstract Recent genomic analyses have revealed that microbial communities are predominantly composed of persistent, sequence-discrete species and intraspecies units (genomovars), but the mechanisms that create and maintain these units remain unclear. By analyzing closely-related isolate genomes from the same or related samples and identifying recent recombination events using a novel bioinformatics methodology, we show that high ecological cohesiveness coupled to frequent-enough and unbiased (i.e., not selection-driven) horizontal gene flow, mediated by homologous recombination, often underlie these diversity patterns. Ecological cohesiveness was inferred based on greater similarity in temporal abundance patterns of genomes of the same vs. different units, and recombination was shown to affect all sizable segments of the genome (i.e., be genome-wide) and have two times or greater impact on sequence evolution than point mutations. These results were observed in bothSalinibacter ruber, an environmental halophilic organism, andEscherichia coli, the model gut-associated organism and an opportunistic pathogen, indicating that they may be more broadly applicable to the microbial world. Therefore, our results represent a departure compared to previous models of microbial speciation that invoke either ecology or recombination, but not necessarily their synergistic effect, and answer an important question for microbiology: what a species and a subspecies are. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025